
In today's rapidly evolving digital landscape, hiring an AI developer has become a priority for businesses looking to stay competitive. Artificial intelligence is no longer a futuristic concept—it's a powerful tool that helps companies drive value, streamline operations, and tackle critical business challenges.
From capturing consumer attention to boosting profitability, AI enables automation, reduces costs, and enhances decision-making processes. According to a 2024 report by McKinsey & Co., up to 72% of organizations worldwide are leveraging AI to address business challenges, underscoring its growing role across industries.
Here are just some of the key tasks AI can handle independently:
Customer Scoring – Identifying high-value customers and predicting behavior
Business and Risk Forecasting– Analyzing trends to mitigate risks and seize opportunities
NPS Calling– Automating customer feedback collection for improved satisfaction
Operations and Process Planning – Enhancing efficiency through data-driven decision-making
Profit Analysis & Forecasting – Providing insights to optimize revenue strategies
Automated Customer Support– Responding to inquiries with AI-powered chatbots
Speech Recognition – Enabling voice-based interactions and transcription
Service Personalization – Tailoring recommendations and experiences for users
AI-Powered Consulting – Offering data-driven business advice
Process Automation– Eliminating manual tasks for greater efficiency
Document Recognition – Extracting and processing information from scanned files
Fraud Monitoring – Detecting suspicious activities in real-time
With AI’s expanding capabilities, businesses that invest in skilled AI developers can unlock new growth opportunities, drive efficiency, and stay ahead of the competition. Moreover, AI is leveling the playing field for small businesses, allowing them to take on tasks that were once beyond their reach. From handling a higher volume of customer inquiries to scaling operations efficiently, AI-powered solutions enable smaller enterprises to compete with larger players—without the need for massive resources.
For years, artificial intelligence was seen as a luxury reserved for top corporations—an expensive, cutting-edge technology accessible only to the biggest players. But that perception is rapidly changing. Governments are now emerging as some of AI’s biggest backers, with the U.S. administration planning a $500 billion investment in AI development, according to Reuters.
For businesses looking to integrate AI, there are several pathways. The most costly approach is building an in-house AI department from the ground up—a route that only the largest companies can afford. However, businesses don’t need a dedicated team of AI specialists to reap the benefits of artificial intelligence.
Companies can instead outsource AI development or leverage existing AI-powered services, dramatically reducing costs while still automating processes, improving efficiency, and gaining a competitive edge. Rather than hiring an entire AI team, businesses can define their specific AI-driven goals and work with external experts to develop tailored solutions—unlocking the full potential of AI without the hefty price tag.

Innovative projects, particularly those involving artificial intelligence, require a fundamentally different approach to team building compared to standard business initiatives. Traditional projects within companies typically focus on incremental modernization—upgrading existing systems or making localized improvements to a single business process.
For example, a company might transition from a basic CRM system to a more advanced version or add a new section to its website. These projects follow a straightforward structure:
HR hires specialists with well-defined roles
Project manager oversees execution
A clear budget is allocated
AI-driven transformational projects, however, operate on an entirely different scale. These initiatives don’t just tweak processes—they reshape business models and redefine how products or services are created. Their impact is company-wide, making it far more complex to determine upfront which specialists are required, how to manage risks, and what the budget should be.
As a result, assembling a balanced AI team is not as simple as filling predefined roles. It requires cross-functional collaboration, an agile approach, and a deep understanding of both technology and business strategy to effectively drive innovation and ensure long-term success.

The best specialists for AI-driven innovation emerge long before the market fully realizes the need for them. They are typically found in academic research labs, professional meetups, and cutting-edge tech communities—often playing a direct role in the creation of groundbreaking technologies.
For companies seeking top AI talent, waiting for the job market to catch up isn’t an option. A skilled AI project manager must actively network, engage with industry thought leaders, and evaluate real technical expertise. However, assessing AI competencies is no small task—it requires a deep understanding of not just technology, but also data, culture, business models, and the human factors that drive AI adoption.
The first and most crucial step in building an AI team? Finding a passionate, forward-thinking AI project manager—someone who isn’t just managing tasks, but is genuinely excited about bringing transformative AI solutions to life. This individual will serve as the core architect of the company’s AI strategy, bridging the gap between research, development, and real-world application.
Large-scale AI projects require more than just an in-house team—they rely on a mix of internal specialists and external experts to drive innovations. Leading AI development firms, such as those specializing in hiring AI developers and assembling project teams, supply the market with highly qualified AI talents. These external experts are brought in specifically for their deep technical expertise and industry experience, enabling businesses to implement cutting-edge AI solutions more effectively.

However, attracting and hiring niche AI specialists is a time-intensive process. Beyond the challenge of finding the right talent, managers must also invest significant time in defining structured interview processes and onboarding frameworks. Without a well-planned recruitment strategy, managers risk being consumed by hiring logistics rather than focusing on leading the team and driving innovation.
This is where companies like Plavno offer a crucial advantage. By handling the complexities of AI talent acquisition, we allow businesses to fast-track development and move directly into execution—accelerating time to market for AI solutions.
A resilient AI team isn’t just defined by technical skills—it’s characterized by its ability to ask the right questions. With a diverse range of perspectives, such a team can identify challenges, spot blind spots, and leverage each member’s unique experience to build AI solutions that are not only effective but also future-proof.
Implementing AI in a company is a strategic journey that requires careful planning and the right mix of internal and external expertise. To ensure a smooth and effective transition, businesses must follow these eight key steps:
Appoint a Project Leader – Identify an internal champion who will drive the AI initiative within the company.
Engage External AI Experts – If the project is large-scale, collaborate with specialized AI development firms to bring in the necessary expertise.
Define AI Opportunities and Budget – With input from the internal leader and external experts, analyze potential AI applications, build a portfolio of high-impact AI projects, and allocate a budget.
Assign a Technically Skilled Project Manager – Each project needs a dedicated AI project manager who understands technology, data-driven decision-making, risk assessment, and product development. This individual should also be skilled in experiment design, hypothesis testing, and regression modeling.
Begin AI Project Execution – Launch the first AI project from the portfolio while simultaneously preparing for the next initiatives in the pipeline.
Hire and Train Internal AI Talent – As AI adoption progresses, recruit specialized in-house resources without disrupting project momentum. New hires should complement and strengthen ongoing developments.
Develop a Hybrid AI Organization – Structure the team to combine internal specialists and external AI experts, leveraging a hybrid workforce to maximize efficiency and innovation.
Establish an AI Competency Center – Create a dedicated AI hub to support ongoing projects, new business models, and enterprise-wide AI adoption. This phase includes:
By following this structured approach, businesses can seamlessly integrate AI into their operations, ensuring a scalable, future-proof AI strategy that drives real value.
The search for an AI project leader is a strategic decision that should be led by a company’s top executives. The ideal leader is someone in a senior position who recognizes that embracing AI is not just about technology—it’s a career-defining opportunity to spearhead complex, high-impact projects that shape both the organization and the industry.

If hiring a dedicated digital leader (such as a Chief AI Officer) is not immediately feasible, the company can build an internal team to drive AI adoption. Key leadership roles that can take charge of AI initiatives include:
CEO – Oversees the company’s strategic vision, manages top executives, and ensures AI aligns with overall business goals.
CTO – Leads the technical execution, hires AI developers, evaluates risks, and ensures AI implementation is feasible and scalable.
CFO – Manages financial risks, builds a portfolio of AI projects, and calculates ROI and long-term profitability.
CMO (Chief Marketing Officer) – Understands market trends and customer needs, ensuring AI initiatives align with consumer behavior.
Chief Digital Officer – Drives the company’s digital transformation, develops an AI strategy, builds partnerships, and oversees data-driven decision-making.
The composition of an AI implementation team evolves depending on the project's stage and complexity. Below are the core roles essential for AI success.
A senior engineering strategist who ensures the AI solution is scalable and efficient.
Designs the solution architecture
Plans product release cycles
Defines development standards
Selects the technology stack
Acts as a risk-mitigating expert within the team
A business-technology bridge who aligns AI development with company goals.
Defines the product vision
Communicates the vision to developers and business stakeholders
Understands business models, market trends, and project requirements
A hybrid data analyst and data scientist responsible for data pipelines.
Designs, builds, and maintains data management systems and APIs
Ensures analysts work with clean, structured data
Collaborates with data scientists to optimize AI models
A predictive analytics expert who transforms raw data into actionable insights.
Develops AI models and machine learning algorithms
Bridges the gap between statistics and software development
A hybrid of system administrator and developer who ensures seamless AI deployment.
Maintains platform infrastructure
Manages CI/CD pipelines for continuous integration and development
Implements Infrastructure as Code (IaC) for scalable environments
A business-focused leader responsible for AI product strategy and execution.
Defines and prioritizes product features
Oversees the product’s lifecycle from development to deployment
AI projects vary in scale, requiring different combinations of specialists. For small companies or first-time AI initiatives, the minimum viable AI team should include:
AI Project Manager – to align AI goals with business needs
Data Engineer – to manage and structure data
Data Scientist – to develop AI models and predictive solutions
As the AI strategy matures, expanding the team with additional roles ensures faster development, better risk management, and higher innovation potential.

Renata Sarvary
Sales Manager
Get a tailored estimate in minutes
Talk to an ExpertTestimonials
Project Estimator
The estimated time to launch the product
Clear vision of functionality you need
15% discount on your first sprint

Value
Phone / Web / WhatsApp agents that qualify, route, and update your systems
Domain terms, policies, and forms infused into responses — measurable accuracy with eval sets
Red-flag catchers, human-in-the-loop steps, redaction, and audit trails
Conversation quality, drop-off analysis, and experiment frameworks to lift conversion
Contact Us
We can sign NDA for complete secrecy
Discuss your project details
Plavno experts contact you within 24h
Submit a comprehensive project proposal with estimates, timelines, team composition, etc
Plavno has a team of experts that ready to start your project. Ask me!

Vitaly Kovalev
Sales Manager
Tools we use
Short List
Frequently Asked Questions
Focused on planning & budgets
It’s a decision-grade ballpark based on typical delivery patterns. We follow up with assumptions and options to tighten scope, cost, and timeline
Absolutely. We design agentic voice/chat workflows and RAG over your private knowledge — measured with evaluation sets and safe-automation guardrails
We operate with SOC 2/ISO-aligned controls, least-privilege access, encrypted secrets, change-management logs, and DPIA support for GDPR
Run the Online Estimator to frame budget/timeline ranges, then book a short call to validate assumptions and choose the quickest route to value